Comment on ‘Germanium electron–hole bilayer tunnel field-effect transistors with a symmetrically arranged double gate’
نویسندگان
چکیده
In this comment we demonstrate that the inclusion of field-induced quantum confinement effects through appropriate discretization of conduction and valence bands refutes the suitability of a germanium electron–hole bilayer tunnel field-effect transistor with symmetrically arranged gates (Jeong et al 2015 Semicond. Sci. Technol. 30 035021). Delayed alignment of the first electron and hole energy subbands in the central gated intrinsic channel region makes the onset of vertical band-to-band tunneling unattainable at low applied voltages for the metal workfunctions used by Jeong et al. Furthermore, quantization effects lead to the appearance of unavoidable parasitic lateral tunneling to the lightly doped drain-source region (LDD), which seriously degrades the switching behavior reported by Jeong et al.
منابع مشابه
Novel attributes of steep-slope staggered type heterojunction p-channel electron-hole bilayer tunnel field effect transistor
In this paper, the electrical characteristics and sensitivity analysis of staggered type p-channel heterojunction electron-hole bilayer tunnel field effect transistor (HJ-EHBTFET) are thoroughly investigated via simulation study. The minimum lattice mismatch between InAs/GaAs0.1Sb0.9 layers besides low carrier effective mass of materials provides high probability ...
متن کاملAssessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor
متن کامل
Solution Processable Nanowire Field-Effect Transistors
Hybrid field-effect-transistors (FETs) with germanium nanowire (NW) arrays and organic gate dielectric are presented. The nanowire deposition steps are fully compatible with printed electronics route. NW FETs demonstrate good performance with On/Off ratios of ~10 and hole mobilities of ~13 cm/Vs in both nitrogen and air atmosphere. These results suggest that the hybrid nanowire FETs could be us...
متن کاملImproved Electrical Properties of Ge p-MOSFET With HfO2 Gate Dielectric by Using TaOxNy Interlayer
The electrical characteristics of germanium p-metal– oxide–semiconductor (p-MOS) capacitor and p-MOS field-effect transistor (FET) with a stack gate dielectric of HfO2/TaOxNy are investigated. Experimental results show that MOS devices exhibit much lower gate leakage current than MOS devices with only HfO2 as gate dielectric, good interface properties, good transistor characteristics, and about...
متن کاملConduction coefficient modeling in bilayer graphene based on schottky transistors
Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...
متن کامل